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Backtracking
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A maze

Image source: https://gfycat.com/ru/babyishtightjanenschia-mazesolving-backtracking

¡ A simple and straightforward strategy to 
escape from a maze is:
¡ Go as deep as possible until reach a dead end.

¡ Go back to the last fork and choose another 
path.

¡ If we have a sign at the fork to show dead 
ends, we can avoid that path to save time. 

¡ This is the idea of backtracking (回溯). It is 
a refinement of the brute force approach
by avoiding dead ends in advance.

https://gfycat.com/ru/babyishtightjanenschia-mazesolving-backtracking


Backtracking

¡ Given the an optimization problem, we usually make a 
sequence of decisions. It can be represented as a tree.

¡ We start from the root and the solutions are the leaves.
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start

solution



Backtracking
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Solution space for 0/1 knapsack problem with 3 items

0 1

0: don’t take
1: take

item 1

item 2

item 3

0 1 0 1

0 1 1 1 10 0 0



DFS vs. Backtracking
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DFS Backtracking

If we know that going along this branch has no
hope, we don’t need to try! It will save a lot of time.



Backtracking

¡ Backtracking is all about HOPE!

¡ We only continue to search solutions only if there is still hope!
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Image source: https://giphy.com/explore/there-is-still-hope

https://giphy.com/explore/there-is-still-hope


Backtracking

¡ In the backtracking method, the solutions are represented by 
vectors (𝑥!, 𝑥", … , 𝑥#).

¡ In step 𝑖 + 1, we start from a partial solution (𝑥!, 𝑥", … , 𝑥$) and 
try to extend it by adding another element 𝑥$%!. 

¡ After extending it, we will test whether (𝑥!, 𝑥", … , 𝑥$, 𝑥$%!) is 
still possible as a partial solution (check hope).
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Backtracking

The steps involved in the backtracking method are:

1. Define a solution space (解空间) for the problem. This space 
must include at least one (optimal) solution to the problem.

¡ If 𝑆! is the domain of 𝑥!, then 𝑆"×𝑆#×⋯×𝑆$ is the solution space of the 
problem.

¡ Generally, the solution space is very huge, so the cost of searching a 
objective solution are often unimaginable. 

¡ For backtracking to be efficient, we must prune (剪枝) the search space.
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Backtracking

2. Organize the solution space so that it can be searched easily.
The typical organization is either a graph or a tree.

3. Searched the solution space in a DFS manner and avoid 
moving into subspaces that cannot possibly lead to the 
answer.
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Solution Space Tree

¡ We set up a tree structure 
such that the leaves 
represent members of the 
solution space. 

¡ So we organize solution space 
as a solution space tree (解空
间树).

¡ Backtracking can easily be 
used to iterate through all 
subsets or permutations of a 
set.
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𝑥!

𝑥"

𝑥#

𝑆#

𝑆"𝑆"

𝑆!

𝑆# 𝑆# 𝑆#



Example

¡ When the problem asks for an 𝑛-element permutation that 
optimizes some function, the solution space tree is a 
permutation tree.

¡ How many permutations are there of an 𝑛-element set?
¡ There are 𝑛 choices for 𝑥".

¡ There are 𝑛 − 1 choices for 𝑥#.

¡ …

¡ There is only 1 choices for 𝑥$.
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𝑥!

𝑥"

𝑥$
𝑆$

…

𝑆!
1 2 𝑛

…
𝑛2 3

𝑆"

…
𝑛 − 11 2

𝑆"

𝑆%&! depends on the choice of 𝑥%

… 𝑆$ … 𝑆$

…

𝑛 𝑖 1



General Backtracking Template
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Backtrack(𝑖)
1   if 𝑖 > 𝑛 then Update(𝑥)
2   else
3        for each 𝑎 ∈ 𝑆$ do
4                𝑥$ ← 𝑎
5                if 𝐶(𝑖) and 𝐵(𝑖) then
6                        Backtrack(𝑖 + 1) 

Reaching leave means that
it is a feasible solution.

Hope checking condition, key
of backtracking. Without it, it
is just brute-force.



Pruning

¡ In backtracking, we have a constraint function (约束函数) 𝐶(𝑖) and a
bounding function (限界函数) 𝐵 𝑖 , to prune invalid branches and to 
focus the search on branches that appear most promising. 
¡ Keep in mind, we don’t waste time on hopeless branches.

¡ In order to improve the performance of search, applying backtracking 
requires specifying at least the following three points: 
¡ How to choose an the constraint function.

¡ How to compute upper bounds (for maximum problem) and lower bounds 
(for minimum problem).

¡ How to make use of the constraint function and the bounding function to 
prune.   
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Constraint Function

¡ Constraint function is to check the feasibility of the current
solution.

¡ Usually, it can be easily built by the problem requirement. For
example:
¡ 0/1 knapsack problem: check if adding the next item exceeds 𝑊.
¡ Permutation problem: check if the number has been selected.
¡ Hamiltonian cycle problem: check (1) if next vertex is connected to the

current vertex; (2) if the last vertex is connected to the first vertex; (3) if
there exist duplicated vertex in the path.

¡ Coloring problem: check if the color for the next vertex is same as its
neighbors.
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Bounding Function

¡ Bounding function is for optimization
problem.

¡ For maximization problem, it calculates
the upper bound of this branch 𝐵(𝑖)
and compare with the existing best
solution 𝑏𝑒𝑠𝑡𝑐.
¡ If 𝐵 𝑖 > 𝑏𝑒𝑠𝑡𝑐, there is still hope, keep

searching!

¡ If 𝐵 𝑖 ≤ 𝑏𝑒𝑠𝑡𝑐, all solutions along this
branch will not better than the existing best
solution, stop!
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𝑖 𝐵(𝑖)

root

leaves
…



Bounding Function
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𝑖 𝐵(𝑖)

root

leaves

𝑖 𝐵(𝑖)

root

𝐵 𝑖 > 𝑏𝑒𝑠𝑡𝑐, go ahead,
there is still hope!

𝐵 𝑖 ≤ 𝑏𝑒𝑠𝑡𝑐, go back, it
is hopeless!

… leaves …



CONTAINER LOADING PROBLEM
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Container Loading Problem

¡ Given 𝑛 containers (集装箱), container 𝑖 has weight 𝑤!. The ship can 
hold containers of total weight up to 𝑊.

¡ Container Loading problem is to load as many containers as is 
possible without sinking the ship.

¡ Assuming that the solutions are represented by vectors 
(𝑥", 𝑥#, … , 𝑥$), where 𝑥! ∈ 0,1 . 1 denotes taking container 𝑖 and 0 
denotes not taking container 𝑖.

¡ The container loading problem can be formally stated as follows:

max2
!%"

$

𝑤!𝑥! 𝑠. 𝑡.2
!%"

$

𝑤!𝑥! ≤ 𝑊
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Container Loading Problem

¡ Each 𝑥! has two options to choose: take and not take.
¡ Therefore, 𝑆! = 2 and the size of the solution space is 2$. It also

means that the solution space tree has 2$ leaves.
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1 0𝑥!

1 0 1 0

1 0 0 0 01 1 1

𝑥"

𝑥8

Solution space tree with 𝑛 = 3



Container Loading Problem

¡ We first design the constraint
function.

¡ Let 𝑐𝑤(𝑖) denote the current 
weight up to level 𝑖, namely

𝑐𝑤 𝑖 =2
&%"

!

𝑤&𝑥&

then the constraint function is
𝐶 𝑖 = 𝑐𝑤 𝑖 − 1 + 𝑤!

¡ The pruning condition is 𝐶 𝑖 > 𝑊,
which means there is no capacity
to take container 𝑖.
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1 0

1 0 1 0

… …

…

𝑥$

1𝑥$:!
Current total
weight: 𝑐𝑤 𝑖 − 1

Total weight after adding
𝑥!: 𝑐𝑤 𝑖 − 1 + 𝑤!



Example
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1 0

1 0 1 0

1 0 0 0 01 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡)

𝐶(𝑡)

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

𝐶(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8𝐶 1 ≤ 𝑊,
go ahead!

𝐶(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8

1

14 𝐶 2 > 𝑊,
go back!

𝐶(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8
0

14 8𝐶 3 ≤ 𝑊,
go ahead!

10

1

𝐶(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8
0

14 8𝐶 4 > 𝑊,
go back! 1

10

1

13

𝐶(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8
0

14 8

1

10

0

13 10

Get a feasible
solution: (1,0,1,0)

𝐶(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8
0

14 8

10

0

13 10

8

11

1

1

0

8

0

0

0

6 0

1 0

8 6 2 0

01 01

11 8 9 6 5 2 3 0
Optimal
solution: 11

𝐶(𝑡)



Pseudocode
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BacktrackLoading(𝑖)
1    if 𝑖 > 𝑛 then
2          if 𝑐𝑤 > 𝑏𝑒𝑠𝑡𝑤 then
3                  𝑏𝑒𝑠𝑡𝑤 ← 𝑐𝑤
4   else
5 if 𝐶(𝑖) ≤ 𝑊 then
6                   𝑐𝑤 ← 𝑐𝑤 + 𝑤[𝑖]
7                   BacktrackLoading(𝑖 + 1)
8                   𝑐𝑤 ← 𝑐𝑤 − 𝑤[𝑖]
9          BacktrackLoading(𝑖 + 1)

Note: we don’t actually build
a tree structure. Instead, we
simply use recursion.

Go ahead by taking container 𝑖 .

Store best solution so far.

Subtract the weight of
container 𝑖 before we go back.

1

0



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8
0

14 8

10

0

13 10

8

11

1

1

0

8

0

0

0

6 0

1 0

8 6 2 0

01 01

11 8 9 6 5 2 3 0

However, we have
found the optimal
solution before we
search the right
subtree!

Time-wasting search

𝐶(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

𝐶(𝑡) Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes
0

1

8
0

14 8

10

0

13 10

8

11

1

1

0

8

0

0

0

6 0

1 0

8 6 2 0

01 01

11 8 9 6 5 2 3 0

In this step, we have decided
not to take container 1.
The remaining total weight is:

6 + 2 + 3 = 11
And, we have known the best
solution so far is 11. So we can
stop searching.

Upper bound: 11

𝐶(𝑡)



Container Loading Problem

¡ Now, as an improvement, we add
the bounding function:

𝐵 𝑖 = 𝐶 𝑖 + 𝑟(𝑖)
where, 𝑟(𝑖) denotes the weight 
sum of the remaining containers, 
namely,

𝑟 𝑖 = 8
%&!'"

$

𝑤%

¡ The pruning condition is 𝐵 𝑖 ≤
𝑏𝑒𝑠𝑡𝑤, which means the continuing
searching along this branch will not
give better solution.
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1 0

1 0 1 0

… …

…

𝑥$%!

1𝑥$
Current total
weight: 𝐶 𝑖

Upper bound: 𝑟(𝑖)

…
𝑥#



Example
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1 0

1 0 1 0

1 0 0 0 01 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑤 = 0
𝐶(𝑡)/𝐵(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)0/19 𝑏𝑒𝑠𝑡𝑤 = 0
𝐶(𝑡)/𝐵(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

𝐶 1 ≤ 𝑊 and
𝐵(1) > 0 , go ahead!

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

𝑏𝑒𝑠𝑡𝑤 = 0
𝐶(𝑡)/𝐵(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

1

𝐶 2 > 𝑊,
go back!

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

14/19

𝑏𝑒𝑠𝑡𝑤 = 0
𝐶(𝑡)/𝐵(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

1

𝐶 2 ≤ 𝑊 and
𝐵(2) > 0 , go ahead!

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

14/19

𝑏𝑒𝑠𝑡𝑤 = 0

8/13

𝐶(𝑡)/𝐵(𝑡)



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0
𝐶 3 ≤ 𝑊, and
𝐵(3) > 0, go ahead!

1

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

𝑏𝑒𝑠𝑡𝑤 = 0

10/13

𝐶(𝑡)/𝐵(𝑡)

14/19



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0
𝐶 4 > 𝑊,
go back!

1

1

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

13/13

𝑏𝑒𝑠𝑡𝑤 = 0
𝐶(𝑡)/𝐵(𝑡)

14/19



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0

1

0

Get a feasible
solution: (1,0,1,0) ,
𝑏𝑒𝑠𝑡𝑤 = 10

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

10/13

𝑏𝑒𝑠𝑡𝑤 = 10
𝐶(𝑡)/𝐵(𝑡)

14/19

13/13



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0

1

0

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

10/13

𝑏𝑒𝑠𝑡𝑤 = 10

𝐶 3 ≤ 𝑊, and
𝐵(3) > 10, go ahead!

10/11

0

𝐶(𝑡)/𝐵(𝑡)

14/19

13/13



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0

1

0

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

10/13

𝑏𝑒𝑠𝑡𝑤 = 10

10/11

0

11/11

𝐶 3 ≤ 𝑊, and
𝐵(3) > 10, go ahead!

1

𝐶(𝑡)/𝐵(𝑡)

14/19

13/13



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0

1

0

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

10/13

𝑏𝑒𝑠𝑡𝑤 = 11

10/11

0

11/11

Get a feasible solution:
(1,0,1,1), 𝑏𝑒𝑠𝑡𝑤 = 11

1

𝐶(𝑡)/𝐵(𝑡)

14/19

13/13



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0

1

0

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

10/13

10/11

0

11/11

𝐶 4 ≤ 𝑊, but 𝐵 4 ≤
11, go back!

1

8/8

0

𝑏𝑒𝑠𝑡𝑤 = 11
𝐶(𝑡)/𝐵(𝑡)

14/19

13/13



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0

1

0

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

10/13

10/11

0

11/11

𝐶 1 ≤ 𝑊, but 𝐵 1 ≤
11, go back!

1

0/11

𝑏𝑒𝑠𝑡𝑤 = 11
𝐶(𝑡)/𝐵(𝑡)

14/19

13/13 8/8



Example
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Backtracking for 𝑛 = 4, 𝑤 = [8,6,2,3], 𝑊 = 12

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes 1

0

1

0

𝐶(𝑡)/𝐵(𝑡)0/19

8/19

8/13

10/13

10/13

10/11

0

11/11

1

𝑏𝑒𝑠𝑡𝑤 = 11

This is the final pruned
solution space tree.

𝐶(𝑡)/𝐵(𝑡)

14/19

13/13 8/8

0/11



Pseudocode
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ImprovedBacktrackLoading(𝑖)
1   if 𝑖 > 𝑛 then
2         if 𝑐𝑤 > 𝑏𝑒𝑠𝑡𝑤 then
3 𝑏𝑒𝑠𝑡𝑤 ← 𝑐𝑤
4                   for 𝑗 ← 1 to 𝑛 do
5                            𝑏𝑒𝑠𝑡𝑥[𝑗] ← 𝑥[𝑗]
6   else
7 𝑟 ← 𝑟 − 𝑤[𝑖]
8 if 𝐶(𝑖) ≤ 𝑊 then 𝑥[𝑖] ← 1
9                                        𝑐𝑤 ← 𝑐𝑤 + 𝑤[𝑖]
10                                      ImprovedBacktrackLoading(𝑖 + 1)
11                                      𝑐𝑤 ← 𝑐𝑤 − 𝑤[𝑖]
12       if 𝐵(𝑖) > 𝑏𝑒𝑠𝑡𝑤 then 𝑥[𝑖] ← 0
13                                      ImprovedBacktrackLoading(𝑖 + 1)
14       𝑟 ← 𝑟 + 𝑤[𝑖]

Record the best solution

𝑟 is initialized as the total
weight sum and reduced at
the begging of each
recursive call. After each
recursive call, we add the
weight back for going back.

Record the current solution



Time Complexity

¡ Although backtracking seems very efficient. The time
complexity for this algorithm is 𝑂(𝑛2#).
¡ 2$ is the time for searching the solution space.

¡ 𝑛 is the time to store the best solution.

¡ This is a sad story…
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Classroom Exercise

¡ Draw the pruned solution space tree for the following
container loading problem instance.

𝑛 = 4, 𝑤 = [4,7,5,3], 𝑊 = 15

49



Classroom Exercise

50

Backtracking for 𝑛 = 4,𝑤 = [4,7,5,3], 𝑊 = 15

Live nodes

Dead nodes

1

𝐶(𝑡)/𝐵(𝑡)0/19

4/19

11/19

11/14

0

1

14/14

1

0/15

0

1

7/15

12/15

15/15

16/19

11/11

4/12

𝐶(𝑡)/𝐵(𝑡)

0/8

7/10

12/12

1

1



Classroom Exercise

¡ In the Sum-of-Subsets problem, there are 𝑛 positive integers 
(weights) 𝑤$ and a positive integer 𝑊.

¡ The goal is to find all subsets of the integers that sum to 𝑊.

¡ Example:
¡ Suppose that 𝑛 = 4, 𝑊 = 13, and 𝑤 = [3,4,5,6].

¡ The solutions is [1,1,0,1] because 𝑤" + 𝑤# + 𝑤( = 3 + 4 + 6 = 13,

¡ Design the constraint function and bounding function, and the 
corresponding condition.

¡ Draw the pruned solution space tree of the above example.
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Classroom Exercise

¡ The constraint function 𝐶 𝑖 and its condition are same as the 
container loading problem:

𝐶 𝑖 > 𝑊

¡ The bounding function 𝐵 𝑖 is same as the container loading 
problem, but the condition is different:

𝐵 𝑖 < 𝑊
¡ Instead of comparing with 𝑏𝑒𝑠𝑡𝑤 in the container loading problem.
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Classroom Exercise
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Backtracking for 𝑛 = 4, 𝑤 = [3,4,5,6], 𝑊 = 13

Live nodes

Dead nodes1

0

1

𝐶(𝑡)/𝐵(𝑡)0/18

3/18

3/14

8/14

1

7/18

7/13

0

12/18

13/13

1

0/15

4/15

1

9/15

1

0

1

𝐶(𝑡)/𝐵(𝑡)

0/11

4/10

9/915/15

3/9

8/814/147/712/1218/18



0/1 KNAPSACK PROBLEM
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0/1 Knapsack Problem

¡ There are 𝑛 items: the 𝑖th item is worth 𝑣$ dollars and weights 
𝑤$ kg. The capacity of knapsack is 𝑊 kg.

¡ Assuming that the solutions are represented by vectors 
(𝑥!, 𝑥", … , 𝑥#), where 𝑥$ ∈ 0,1 . 1 denotes taking item 𝑖 and 0 
denotes not taking item 𝑖.

¡ The 0/1 knapsack problem can be formally stated as follows:

maxI
$D!

#

𝑣$𝑥$ 𝑠. 𝑡.I
$D!

#

𝑤$𝑥$ ≤ 𝑊
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0/1 Knapsack Problem

¡ It is nothing but a high-level container loading problem.
¡ The size of solution space and the solution space tree are exactly

same as the container loading problem.

56

1 0𝑥!

1 0 1 0

1 0 0 0 01 1 1

𝑥"

𝑥8

Solution space tree with 𝑛 = 3



0/1 Knapsack Problem

¡ Constraint function: also exactly same as the container loading
problem!

¡ Let 𝑐𝑤(𝑖) denote the current weight up to level 𝑖, namely

𝑐𝑤 𝑖 =I
ED!

$

𝑤E𝑥E

then the constraint function is
𝐶 𝑖 = 𝑐𝑤 𝑖 − 1 + 𝑤$

¡ The pruning condition is 𝐶 𝑖 > 𝑊, which means there is no
capacity to take container 𝑖.
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0/1 Knapsack Problem

¡ The bounding function:
𝐵 𝑖 = 𝐶 𝑖 + 𝑟(𝑖)

However, different from the bounding function in the container 
loading problem, 𝑟(𝑖) denotes the value sum of the remaining 
items, namely,

𝑟 𝑖 = I
ED$%!

#

𝑣E

¡ The pruning condition is 𝐵 𝑖 ≤ 𝑏𝑒𝑠𝑡𝑣, which means the
continuing searching along this branch will not give better
solution.
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Example

59

1 0

1 0 1 0

1 0 0 0 01 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 0
𝐶(𝑡)/𝐵(𝑡)

0/30



Example

60

1 0

1 0 1 0

1 0 0 0 01 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 0
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30



Example
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1 0

1 0 1 0

1 0 0 0 01 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 0
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30



Example
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1 0

1 0 1 0

1 0 0 0 01 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 0
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30



Example

63

1 0

1 0 1 0

1 0 0 0 01 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 0
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30



Example
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1 0

1 0 1 0

1 0 0 0 01 1 1

0
1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20
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1 0

1 0 1 0

1 0 0 0 01 1 1

0
1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21
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1 0

1 0 1 0

1 0 0 0 01 1 1

0 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21
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1 0

1 0 1 0

1 0 0 0 01 1 1

0
1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11
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1 0

1
1 0

1 0 0 0 01 1 1

0
1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

0



Example
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1 0

1
1 0

1 0 0 0 01 1 1

0
1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

0
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1 0

1
1 0

1 0 0 0 01 1 1

0 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23

0
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1 0

1
1 0

1 0 0 0 01 1 1

0
1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

0
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1 0

1
1 0

1 0 0 01 1 1

0
1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0
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1

1
1 0

1 0 0 01 1 1

0
1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

0

0



Example
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1 0

1 0 1
0

1 0 0 01 1 1

0
1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

2/26



Example
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1 0

1 0 1
0

1 0 0 01 1 1

0
1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

2/26

5/26
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1 0

1 0 1
0

1 0 0 01 1 1

0
0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

2/26

5/26

10/26
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1 0

1 0 1
0

1 0 0 01 1 1

0
1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

2/26

5/26

10/26 5/16
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1 0

1 0 1
0

1 0 01 1 1

0
1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

2/26

5/26

10/26 5/16

2/17
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1 0

1 0 1 0

1 0 1 1

0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

2/26

5/26

10/26 5/16

2/17

0/19

Is this most efficient? Can
we further prune the tree?



0/1 Knapsack Problem

¡ Let’s look back at the bounding function

𝐵 𝑖 = 𝑐𝑣 𝑖 + 𝑟 𝑖 𝑐𝑣 𝑖 =I
ED!

$

𝑣E𝑥E 𝑟 𝑖 = I
ED$%!

#

𝑣E

with the condition 𝐵 𝑖 ≤ 𝑏𝑒𝑠𝑡𝑣.

¡ What can we do if we want to prune more branches?

Make the bound tighter by decreasing the value of 𝐵(𝑖)
(actually 𝑟(𝑖), because 𝐶 𝑖 is fixed at level 𝑖).

80



Example
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1 0

1 0 1 0

1 0 1 1

0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/30

3/30

6/30

11/30 6/20

3/21

8/21 3/11

1/23

4/23

9/23 4/13

1/14

0/26

2/26

5/26

10/26 5/16

2/17

0/19

Can you really
take the upper
bound values in
these branches?

The weight is not
consider in the
bounding function!



0/1 Knapsack Problem

¡ Now, we consider the weight limit in the bounding function.

¡ Given the remaining capacity 𝑊 − 𝑐𝑤(𝑖), what is the
maximum value can we get?

¡ We can use the following greedy strategy:
¡ Take the most valuable remaining items until we can’t take any more.

¡ Take a fraction of the next item until fully loaded.

¡ It does not mean we can really take fraction of item. It is just
the upper bound of the remaining value.

82



0/1 Knapsack Problem

¡ First, sort the objects in decreasing order of value/weight ahead of 
time, namely

𝑣"/𝑤" ≥ 𝑣#/𝑤# ≥ ⋯ ≥ 𝑣$/𝑤$
¡ Now, we are at level 𝑖, which means we have made decision for the

first 𝑖 items.
¡ We continue to put from item 𝑖 + 1 until item 𝑘. When put item 𝑘 in,

the load exceeds 𝑊.
¡ Then we take a fraction of item 𝑘 for the remaining capacity.

𝑟 𝑖 = 2
&%!I"

JK"

𝑣& + (𝑊 − 𝑐𝑤 𝑖 − 2
&%!I"

JK"

𝑤& )(
𝑣J
𝑤J
)

83

Total value from
item 𝑖 + 1 to 𝑘 − 1 Capacity available for item 𝑘 Value per unit

weight for item 𝑘



Example
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1 0

1 0 1 0

1 0 0 0 01 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7, 𝑣/𝑤 = [4, 3.5, 3, 2]

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 0
𝐶(𝑡)/𝐵(𝑡)

0/22

4 + 7 + 9
+ 7 − 6 ×2 = 22
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1 0

1 0 1 0

1 0 0 01 1 1

0
1 0 1 0 1 0 1 0 1 0 1 0

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/22

3/22

6/22

11/22 6/20

3/19

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7, 𝑣/𝑤 = [4, 3.5, 3, 2]

4 + 7 + 7 − 3 ×2
= 19
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1 0

1
1 0

1 0 01 1

0
1 0 1 0 1 0 1 0

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/22

3/22

6/22

11/22 6/20

3/19

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7, 𝑣/𝑤 = [4, 3.5, 3, 2]

4 + 9 + 7 − 4 ×2
= 19

1/19
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1

1

1

0

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 20
𝐶(𝑡)/𝐵(𝑡)

0/30

1/22

3/22

6/22

11/22 6/20

3/19

Backtracking for 𝑛 = 4, 𝑣 = [4,7,9,10], 𝑤 = [1,2,3,5], 𝑊 = 7, 𝑣/𝑤 = [4, 3.5, 3, 2]

7 + 9 + 7 − 5 ×2
= 20

1/19

1/19

The pruned solution
space tree is much better!
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BacktrackKnapsack(𝑖)
1    if 𝑖 > 𝑛 then
2          if 𝑐𝑣 > 𝑏𝑒𝑠𝑡𝑣 then
3                  𝑏𝑒𝑠𝑡𝑣 ← 𝑐𝑣
4                  for 𝑗 ← 1 to 𝑛 do
5                           𝑏𝑒𝑠𝑡𝑥[𝑗] ← 𝑥[𝑗]
6    else
7 if 𝐶(𝑖) ≤ 𝑊 then 𝑥[𝑖] ← 1
8                                         𝑐𝑤 ← 𝑐𝑤 + 𝑤[𝑖];  𝑐𝑣 ← 𝑐𝑣 + 𝑣[𝑖];
9                                         BacktrackKnapsack(𝑖 + 1)
10                                       𝑐𝑤 ← 𝑐𝑤 − 𝑤[𝑖]; 𝑐𝑣 ← 𝑐𝑣 − 𝑣[𝑖];
11         if 𝐵(𝑖) > 𝑏𝑒𝑠𝑡𝑣 then 𝑥[𝑖] ← 0
12                                       BacktrackKnapsack(𝑖 + 1)

Nothing special compared with
container loading problem. Just
separate 𝑐𝑤 and 𝑐𝑣.

We don’t record the remaining
value here and leave it in 𝐵(𝑖).



Pseudocode
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r(𝑖)
1   𝑟𝑤 ← 𝑊 − 𝑐𝑤
2   𝑏 ← 𝑐𝑣
3   while 𝑖 + 1 ≤ 𝑛 and 𝑤[𝑖 + 1] ≤ 𝑟𝑤 do
4        𝑟𝑤 ← 𝑟𝑤 − 𝑤[𝑖 + 1]
5        𝑏 ← 𝑏 + 𝑣[𝑖 + 1]
6        𝑖 ← 𝑖 + 1
7   if 𝑖 + 1 ≤ 𝑛 then 𝑏 ← 𝑏 + 𝑣[𝑖 + 1]/𝑤[𝑖 + 1]×𝑟𝑤
8   return 𝑏

Remaining capacity

Total value
Loop until we can’t take
the whole item 𝑖 + 1

Take a fraction of item 𝑖 + 1



Classroom Exercise

¡ Draw the pruned solution space tree of 0/1 knapsack problem
for the following problem instance:

𝑛 = 3, 𝑣 = [4,3,1], 𝑤 = [2,5,5], 𝑊 = 6
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Classroom Exercise

¡ First, rank the item by their value per unit weight:

𝑛 = 3, 𝑣 = [40,30,20], 𝑤 = [2,5,4], 𝑊 = 6, 𝑣/𝑤 = [20,6,5]
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1 0

1 0

01

Backtracking for 𝑛 = 3, 𝑣 = [40,30,20], 𝑤 = [2,5,4], 𝑊 = 6, 𝑣/𝑤 = [20,6,5]

Live nodes

Dead nodes

Unvisited internal nodes

Unvisited leaf nodes

𝐶(𝑡)/𝐵(𝑡)𝑏𝑒𝑠𝑡𝑣 = 60
𝐶(𝑡)/𝐵(𝑡)

0/64

2/64

7/64 2/60

6/60 2/40

0/35



𝑛 QUEEN PROBLEM
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𝑛 Queen Problem

¡ The goal of 𝑛 queen problem
(𝑛皇后问题) is to position 𝑛
queens on an 𝑛×𝑛
chessboard so that no two 
queens threaten each other.
¡ No two queens may be in the 

same row, column, or diagonal. 
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Image source: https://medium.com/swlh/how-many-solutions-does-the-n-queens-problem-have-e8da5d45a34c

https://medium.com/swlh/how-many-solutions-does-the-n-queens-problem-have-e8da5d45a34c


𝑛 Queen Problem

¡ What is the size of solution space for the 𝑖th queen?

¡ 𝑛" − 𝑖 + 1? It is too large. We can limit it by considering the
constraint.
¡ Because two queens can’t be put in the same row, we directly put each

queen in different row.

¡ Now, the solution space for the 𝑖th queen is 𝑛.

¡ Thus, the constraint function only needs to check if two queens are in the 
same column or diagonal.
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𝑛 Queen Problem
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Image source: Figure 5.2-5.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The solution space tree for 𝑛 = 4



𝑛 Queen Problem
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What is the
constraint function?

Image source: https://meetwithbudhi.wordpress.com/2019/09/16/n-queens-puzzle/

https://meetwithbudhi.wordpress.com/2019/09/16/n-queens-puzzle/


𝑛 Queen Problem

¡ The constraint function checks if the new added queen is in the 
same column, or along the same diagonal.

¡ Now, we know that the 𝑖th queen is in the 𝑖th row. Let 𝑥$ be
the column of the 𝑖th queen.
¡ If the 𝑘th and 𝑗th queen are in the same column:

𝑥) = 𝑥%
¡ If the 𝑘th and 𝑗th queen are along the same diagonal:

𝑥) − 𝑥% = 𝑘 − 𝑗 or 𝑥) − 𝑥% = 𝑗 − 𝑘

Namely: |𝑥) − 𝑥%| = |𝑘 − 𝑗|.

98



Example

99

1 4

Backtracking for 𝑛 = 4
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Backtracking for 𝑛 = 4
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Backtracking for 𝑛 = 4

Live nodes

Dead nodes2 3

1 42 3

1 42 3
1 42 3

1 42 3

…

…

…

4

1

31 2 4



Pseudocode
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BacktrackNqueens()
1     𝑥[1] ← 0
2     𝑘 ← 1
3     while 𝑘 > 0 do
4 while 𝑥[𝑘] ≤ 𝑛 − 1 do
5 𝑥[𝑘] ← 𝑥[𝑘] + 1
6         if Place(𝑘) = True then
7 if 𝑘 = 𝑛 then 𝑆𝑜𝑙𝑁𝑢𝑚 ← 𝑆𝑜𝑙𝑁𝑢𝑚 + 1
8             else
9 𝑘 ← 𝑘 + 1
10   𝑥[𝑘] ← 0
11         𝑘 ← 𝑘 − 1

Place(𝑘)
1   for 𝑗 ← 1 to 𝑘 − 1 do
2 if |𝑘 − 𝑗| = |𝑥[𝑘] − 𝑥[𝑗]|

or 𝑥[𝑗] = 𝑥[𝑘] then
3 return False
4   return True

Number of
valid solutions

Start from 0,
increment in the loop,
so the condition only
checks ≤ 𝑛 − 1

No recursion is used here



Classroom Exercise

Write the pseudocode of the recursive version of 𝑛 queen
problem.
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Classroom Exercise
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RecursiveBacktrackNqueens(𝑘)
3 if Place(𝑘) = True then 
4 if 𝑘 = 𝑛 then 𝑆𝑜𝑙𝑁𝑢𝑚 ← 𝑆𝑜𝑙𝑁𝑢𝑚 + 1
5 else

for 𝑗 ← 1 to 𝑛 do
5 𝑥[𝑘 + 1] ← 𝑗
6 RecursiveBacktrackNqueens(𝑘 + 1)

Start from 0

Place(𝑘)
1   for 𝑗 ← 1 to 𝑘 − 1 do
2 if |𝑘 − 𝑗| = |𝑥[𝑘] − 𝑥[𝑗]| or 𝑥[𝑗] = 𝑥[𝑘] then
3 return False
4   return True



TRAVELING SALESPERSON PROBLEM
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Traveling Salesperson Problem

¡ Given an 𝑛 vertex network (undirected or
directed), traveling salesperson problem
(旅行商问题, TSP) is to find a cycle of 
minimum cost that includes all n vertices. 
¡ Hamiltonian cycle with minimum cost.

¡ Any cycle that includes all 𝑛 vertices of a 
network is called a tour. In TSP, we are to 
find a least-cost tour. For example:
¡ Tour (1,2,4,3,1) costs 66.
¡ Tour (1,4,3,2,1) costs 59.

¡ Tour (1,3,2,4,1) costs 25, optimal.
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Traveling Salesperson Problem
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Image source: https://www.programmersought.com/article/32324255027/

https://www.programmersought.com/article/32324255027/


Traveling Salesperson Problem

¡ Since a tour is a cycle that includes all vertices, we may pick any 
vertex as the start (and hence the end).
¡ Usually we use vertex 1 as the start and end vertex.

¡ Each tour is then described by the vertex sequence:
(1, 𝑥", … , 𝑥#, 1)

where 𝑥", … , 𝑥# is a permutation of (2, 3, … , 𝑛). 

¡ The possible tours may be described by a permutation tree in 
which each root-to-leaf path defines a tour. 
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Traveling Salesperson Problem
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2 4

3 4 2 3

Unvisited internal nodes

Unvisited leaf nodes
1

4 3 4 2 3 2

2 4

3

𝑥!

𝑥"

𝑥8

𝑥`

Permutation tree for TSP when 𝑛 = 4



Traveling Salesperson Problem

¡ 𝑤[𝑖, 𝑗] denotes the weight of vertex 𝑖 and vertex 𝑗.
¡ 𝑤[𝑖, 𝑗] = ∞ denotes no edge between vertex 𝑖 and vertex 𝑗.

¡ 𝑥[𝑖] denotes the vertex to be searched.

¡ What are the constraint function and bounding function?
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Traveling Salesperson Problem

¡ Constraint function 𝐶(𝑖) is to simply check if the next vertex is
connected to the current vertex:

𝐶 𝑖 = 𝑤 𝑥 𝑖 , 𝑥 𝑗
Check if 𝐶(𝑖) ≠ ∞.

¡ Bounding function 𝐵 𝑖 is the total weight if we connect 𝑥 𝑖 :
𝐵 𝑖 = 𝑐𝑤 𝑖 − 1 + 𝑤[𝑥 𝑖 − 1 , 𝑥[𝑖]]

𝑐𝑤 𝑖 =I
ED"

$

𝑤[𝑥 𝑗 − 1 , 𝑥[𝑗]]

Check if 𝐵 𝑖 < 𝑏𝑒𝑠𝑡𝑤.
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This graph is complete graph. Therefore the constraint function is useless.

𝑏𝑒𝑠𝑡𝑤 = ∞
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Pseudocode
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BacktrackTSP(𝑖)
1  if 𝑖 = 𝑛 then 
2 if 𝑤[𝑥[𝑛 − 1], 𝑥[𝑛]] ≠ ∞ and 𝑤[𝑥[𝑛], 1] ≠ ∞ then 
3            if 𝑐𝑤 + 𝑤[𝑥[𝑛 − 1], 𝑥[𝑛]] + 𝑤[𝑥[𝑛], 1] < 𝑏𝑒𝑠𝑡𝑤 then
4 𝑏𝑒𝑠𝑡𝑤 ← 𝑐𝑤 + 𝑤[𝑥[𝑛 − 1], 𝑥[𝑛]] + 𝑤[𝑥[𝑛], 1]
5 for 𝑗 ← 1 to 𝑛 do
6                           𝑏𝑒𝑠𝑡𝑥[𝑗] ← 𝑥[𝑗]
7   else for 𝑗 ← 𝑖 to 𝑛 − 1 do
8        if 𝑤[𝑥[𝑖 − 1], 𝑥[𝑗]] ≠ ∞ and 𝑐𝑤 + 𝑤[𝑥[𝑖 − 1], 𝑥[𝑗]] < 𝑏𝑒𝑠𝑡𝑤 then
9                   𝑥[𝑖]↔ 𝑥[𝑗]
10         𝑐𝑤 ← 𝑐𝑤 + 𝑤[𝑥[𝑖 − 1], 𝑥[𝑖]]
11 BacktrackTSP(𝑖 + 1)
12      𝑐𝑤 ← 𝑐𝑤 − 𝑤[𝑥[𝑖 − 1], 𝑥[𝑖]]
13 𝑥[𝑖]↔ 𝑥[𝑗]

Connectivity between
the last two vertices

Connectivity between the
last and the first vertex

We don’t iterate to 𝑛 because
the last vertex is the only choice

We don’t assign values
to 𝑥[𝑖], instead we use
permutation trick.

Call BacktrackTSP(2) with initialization 𝑥 𝑖 = 𝑖.



Classroom Exercise

Consider the 3-coloring problem for the given graph. Design
constraint function and bounding function, and draw the pruned
solution space tree to find a solution.
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Classroom Exercise
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Image source: Figure 5.12, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

¡ The constraint function is to
check duplicated color.

¡ There is no bounding function
for m-coloring problem.
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Conclusion

After this lecture, you should know:

¡ What is the difference between DFS and backtracking.

¡ What is a solution space tree.

¡ What is constraint function and bounding function.

¡ What kind of problems can be solved by backtracking.
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Homework

Page 238-240

12.7

12.8

12.10

¡ For these questions, you should describe the idea of how to
design constraint function and bounding function. And then
write down the pseudocode.
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Experiment 1

¡ Write a program to solve a Sudoku puzzle by 
filling the empty cells.

¡ A sudoku solution must satisfy all of the 
following rules:
¡ Each of the digits 1-9 must occur exactly once in 

each row.

¡ Each of the digits 1-9 must occur exactly once in 
each column.

¡ Each of the the digits 1-9 must occur exactly once in 
each of the 9 3x3 sub-boxes of the grid.

¡ Empty cells are indicated by the character ’.’.
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Experiment 1

¡ Input:
[["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5
",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".
",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1
"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".
","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",
".",".","8",".",".","7","9"]] 

¡ Output: 
[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","
9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"
],["8","5","9","7","6","1","4","2","3"],["4","2","6","8",
"5","3","7","9","1"],["7","1","3","9","2","4","8","5","6
"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4"
,"1","9","6","3","5"],["3","4","5","2","8","6","1","7","
9"]]
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Experiment 2

¡使用回溯解决石材切割问题.
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谢谢

有问题欢迎随时跟我讨论
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